Math 142 Lecture 7 Notes

Daniel Raban

February 6, 2018

1 Compactness and Connectivity in \mathbb{R}^n

1.1 The Heine-Borel theorem and compactness in \mathbb{R}^n

Theorem 1.1 (Heine-Borel). Any closed and bounded interval $[a, b] \subseteq \mathbb{R}$ is compact.

Proof. Give $[a, b] \subseteq \mathbb{R}$ the subspace topology, and let \mathcal{C} be an open cover of [a, b]. Let $X = \{x \in [a, b] : [a, x] \text{ is contained in the union of finitely many elements of } \mathcal{C}\}$. If $b \in X$, then $[a, b] = U_1 \cup \cdots \cup U_n$ for $U_i \in \mathcal{C}$, so $\{U_1, \ldots, U_n\}$ is a finite subcover of \mathcal{C} .

Think of $X \subseteq \mathbb{R}$. We know that $a \in X$, and $[a, a] = \{a\}$ is contained in some $U \in \mathcal{C}$ such that $a \in U$. Additionally, X is bounded above by b. So X has a supremum $s \in \mathbb{R}$. We want to show that s = b and that $s \in X$.

Certainly, $s \leq b$, so $s \in [a, b]$. Let $U \in \mathcal{C}$ be an open set such that $s \in U$. If s < b, then we can find some $\varepsilon > 0$ such that $(s - \varepsilon, s + \varepsilon) \subseteq U$. If s = b, then we can find some $\varepsilon > 0$ such that $(s - \varepsilon, s] \subseteq U$; this set is also open in the subspace topology on [a, b]. We can find points of X arbitrarily close to s; i.e. we can find $x_{\varepsilon} \in X$ such that $|s - x| < \varepsilon/2$. If $x_{\varepsilon} \in X$, then $[a, x_{\varepsilon}] \subseteq U_1 \cup \cdots \cup U_n$ for some $U_i \in \mathcal{C}$. if $s < x_{\varepsilon}$, then $[a, s] \subseteq [a, x_{\varepsilon}]$, so $s \in X$. If $s > x_{\varepsilon}$, then $[x_{\varepsilon}, s] \subseteq U$. So $[a, s] \subseteq U_1 \cup \cdots \cup U_n \cup U$, which makes $s \in X$.

Also, if s < b, then $[a, s + \varepsilon/2] \subseteq U_1 \cup \cdots \cup U_n \cup U$. So $s + \varepsilon/2 \in X$, contradicting the fact that s is the supremum of X. So s = b, which shows that C has a finite subcover. Since C was arbitrary, we conclude that [a, b] is compact.

This implies the following theorem, which is more our end-goal.

Theorem 1.2. $A \subseteq \mathbb{R}^n$ is compact iff A is closed and bounded.

Proof. (\implies) We proved this last lecture.

 (\Leftarrow) A is bounded, so $A \subseteq [-s,s]^n$ for some s > 0. Let $C = [-s,s]^n$. The set [-s,s] is compact in \mathbb{R} by our previous theorem, so our product theorem for compact spaces says that $C \subseteq \mathbb{R}^n$ is compact. Then $A \subseteq C$ is closed in the subspace topology. As a closed subset of a compact space, A is compact.

1.2 Connectivity

Definition 1.1. A space X is *connected* if whenever $X = A \cup B$ with A, B open and $A \cap B = \emptyset$, then either $A = \emptyset$ or $B = \emptyset$.

Here are a few equivalent definitions:

- 1. If $X = A \cup B$ with A, B open and nonempty, then $\overline{A} \cap B = \emptyset$ or $A \cap \overline{B} = \emptyset$.
- 2. If $A \subseteq X$ is both open and closed, then A = X or $A = \emptyset$.
- 3. If $A \subseteq X$ has empty boundary, then A = X or $A = \emptyset$.
- 4. If $f : X \to \{1, 2\}$ is continuous, and $\{1, 2\}$ has the discrete topology, then f is constant.

Theorem 1.3. \mathbb{R} is connected.

Proof. If $\mathbb{R} = A \cup B$ with A, B open and $A \cap B = \emptyset$, then $\mathbb{R} \setminus A = B$ and $\mathbb{R} \setminus B = A$ are closed. Choose $x \in A$ and $y \in B$, and assume (without loss of generality) that x < y. Let $X = \{b \in [x, y] : [b, y] \subseteq B\}$. We know $y \in B$ and $y \in [x, y]$, so $y \in X$, making $X \neq \emptyset$. Also, x is a lower bound for X. So $I = \inf X \in \mathbb{R}$ exists. As the infimum of X, I is a limit point of X. Since $X \subseteq B, I$ is a limit point of B, so $I \in \overline{B} = B$. This means $I \notin A$. Since B is open, we can find $\varepsilon > 0$ such that $(I - \varepsilon, I + \varepsilon) \subseteq B$. So $[I - \varepsilon/2, y] \subseteq B$, contradicting the definition of I as the infimum of X.

Theorem 1.4. A nonempty $X \subseteq \mathbb{R}$ is connected iff X is an interval (i.e. X = (a, b) or [a, b] or (a, b] or [a, b)).

Proof. (\Leftarrow) This is the same proof as the previous theorem.

 (\implies) If X is connected but X is not an interval, then there exist $a, b \in X$ and $p \in \mathbb{R} \setminus X$ such that $a . Let <math>A = \{x \in X : x < p\}$, and let $B = \{x \in X : x > p\}$. Then $A, B \neq \emptyset$, as $a \in A$ and $b \in B$. We have $X = A \cup B$ and $A \cap B = \emptyset$, as $x \in X$ satisfies either x < p or x > p. To show that A is open, we show that B is closed. Since $p \notin X, \overline{B} \subseteq X$ only contains points larger than p; so $\overline{B} = B$. This means that B is closed, so A is open. Similarly, A is closed, so B is open. This contradicts X being connected. \Box