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1 Compactness and Connectivity in Rn

1.1 The Heine-Borel theorem and compactness in Rn

Theorem 1.1 (Heine-Borel). Any closed and bounded interval [a, b] ⊆ R is compact.

Proof. Give [a, b] ⊆ R the subspace topology, and let C be an open cover of [a, b]. Let
X = {x ∈ [a, b] : [a, x] is contained in the union of finitely many elements of C}. If b ∈ X,
then [a, b] = U1 ∪ · · · ∪ Un for Ui ∈ C, so {U1, . . . , Un} is a finite subcover of C.

Think of X ⊆ R. We know that a ∈ X, and [a, a] = {a} is contained in some U ∈ C
such that a ∈ U . Additionally, X is bounded above by b. So X has a supremum s ∈ R.
We want to show that s = b and that s ∈ X.

Certainly, s ≤ b, so s ∈ [a, b]. Let U ∈ C be an open set such that s ∈ U . If s < b, then
we can find some ε > 0 such that (s− ε, s + ε) ⊆ U . If s = b, then we can find some ε > 0
such that (s − ε, s] ⊆ U ; this set is also open in the subspace topology on [a, b]. We can
find points of X arbitrarily close to s; i.e. we can find xε ∈ X such that |s− x| < ε/2. If
xε ∈ X, then [a, xε] ⊆ U1 ∪ · · ·Un for some Ui ∈ C. if s < xε, then [a, s] ⊆ [a, xε], so s ∈ X.
If s > xε, then [xε, s] ⊆ U . So [a, s] ⊆ U1 ∪ · · · ∪ Un ∪ U , which makes s ∈ X.

Also, if s < b, then [a, s + ε/2] ⊆ U1 ∪ · · · ∪ Un ∪ U . So s + ε/2 ∈ X, contradicting
the fact that s is the supremum of X. So s = b, which shows that C has a finite subcover.
Since C was arbitrary, we conclude that [a, b] is compact.

This implies the following theorem, which is more our end-goal.

Theorem 1.2. A ⊆ Rn is compact iff A is closed and bounded.

Proof. ( =⇒ ) We proved this last lecture.
(⇐= ) A is bounded, so A ⊆ [−s, s]n for some s > 0. Let C = [−s, s]n. The set [−s, s]

is compact in R by our previous theorem, so our product theorem for compact spaces says
that C ⊆ Rn is compact. Then A ⊆ C is closed in the subspace topology. As a closed
subset of a compact space, A is compact.
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1.2 Connectivity

Definition 1.1. A space X is connected if whenever X = A ∪ B with A,B open and
A ∩B = ∅, then either A = ∅ or B = ∅.

Here are a few equivalent definitions:

1. If X = A ∪B with A,B open and nonempty, then A ∩B = ∅ or A ∩B = ∅.

2. If A ⊆ X is both open and closed, then A = X or A = ∅.

3. If A ⊆ X has empty boundary, then A = X or A = ∅.

4. If f : X → {1, 2} is continuous, and {1, 2} has the discrete topology, then f is
constant.

Theorem 1.3. R is connected.

Proof. If R = A ∪ B with A,B open and A ∩ B = ∅, then R \ A = B and R \ B = A are
closed. Choose x ∈ A and y ∈ B, and assume (without loss of generality) that x < y. Let
X = {b ∈ [x, y] : [b, y] ⊆ B}. We know y ∈ B and y ∈ [x, y], so y ∈ X, making X 6= ∅.
Also, x is a lower bound for X. So I = inf X ∈ R exists. As the infimum of X, I is a limit
point of X. Since X ⊆ B, I is a limit point of B, so I ∈ B = B. This means I /∈ A. Since
B is open, we can find ε > 0 such that (I−ε, I +ε) ⊆ B. So [I−ε/2, y] ⊆ B, contradicting
the definition of I as the infimum of X.

Theorem 1.4. A nonempty X ⊆ R is connected iff X is an interval (i.e. X = (a, b) or
[a, b] or (a, b] or [a, b)).

Proof. (⇐= ) This is the same proof as the previous theorem.
( =⇒ ) If X is connected but X is not an interval, then there exist a, b ∈ X and

p ∈ R \X such that a < p < b. Let A = {x ∈ X : x < p}, and let B = {x ∈ X : x > p}.
Then A,B 6= ∅, as a ∈ A and b ∈ B. We have X = A ∪ B and A ∩ B = ∅, as x ∈ X
satisfies either x < p or x > p. To show that A is open, we show that B is closed. Since
p /∈ X, B ⊆ X only contains points larger than p; so B = B. This means that B is closed,
so A is open. Similarly, A is closed, so B is open. This contradicts X being connected.
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