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1 Compactness and Connectivity in R”

1.1 The Heine-Borel theorem and compactness in R"

Theorem 1.1 (Heine-Borel). Any closed and bounded interval [a,b] C R is compact.

Proof. Give [a,b] C R the subspace topology, and let C be an open cover of [a,b]. Let
X = {z € [a,b] : [a, ] is contained in the union of finitely many elements of C}. If b € X,
then [a,b] =UyU---UU, for U; € C, so {Uy,...,Uy} is a finite subcover of C.

Think of X C R. We know that a € X, and [a,a] = {a} is contained in some U € C
such that a € U. Additionally, X is bounded above by b. So X has a supremum s € R.
We want to show that s = b and that s € X.

Certainly, s < b, so s € [a,b]. Let U € C be an open set such that s € U. If s < b, then
we can find some € > 0 such that (s —¢,s+¢) C U. If s = b, then we can find some € > 0
such that (s — e,s] C U; this set is also open in the subspace topology on [a,b]. We can
find points of X arbitrarily close to s; i.e. we can find x. € X such that |s — x| < g/2. If
ze € X, then [a,z.] CULU---U, for some U; € C. if s < x, then [a, s] C [a,z.],s0o s € X.
If s > z., then [z.,s] CU. So [a,s] CU U---UU, UU, which makes s € X.

Also, if s < b, then [a,s +¢/2] CULU---UU,UU. So s+¢/2 € X, contradicting
the fact that s is the supremum of X. So s = b, which shows that C has a finite subcover.
Since C was arbitrary, we conclude that [a, b] is compact. ]

This implies the following theorem, which is more our end-goal.
Theorem 1.2. A C R" is compact iff A is closed and bounded.

Proof. (=) We proved this last lecture.

(<= ) Ais bounded, so A C [—s, s]" for some s > 0. Let C' = [—s, s|". The set [—s, 5]
is compact in R by our previous theorem, so our product theorem for compact spaces says
that C' C R™ is compact. Then A C ' is closed in the subspace topology. As a closed
subset of a compact space, A is compact. O



1.2 Connectivity

Definition 1.1. A space X is connected if whenever X = AU B with A, B open and
AN B = @, then either A= or B=02.

Here are a few equivalent definitions:

1. If X = AU B with A, B open and nonempty, then ANB =2 or ANB = @.
2. If A C X is both open and closed, then A = X or A = &.

3. If A C X has empty boundary, then A = X or A = @.

4. If f : X — {1,2} is continuous, and {1,2} has the discrete topology, then f is
constant.

Theorem 1.3. R is connected.

Proof. If R= AU B with A, B open and AN B = &, then R\ A =B and R\ B = A are
closed. Choose z € A and y € B, and assume (without loss of generality) that x < y. Let
X ={be[x,y]:[b,y] € B}. We know y € B and y € [z,y], so y € X, making X # &.
Also, z is a lower bound for X. So I = inf X € R exists. As the infimum of X, [ is a limit
point of X. Since X C B, I is a limit point of B, so I € B = B. This means I ¢ A. Since
B is open, we can find € > 0 such that (I —¢,I+¢) C B. So [ —¢/2,y] C B, contradicting
the definition of I as the infimum of X. O

Theorem 1.4. A nonempty X C R is connected iff X is an interval (i.e. X = (a,b) or
[a,b] or (a,b] or [a,b)).

Proof. (<= This is the same proof as the previous theorem.

( = ) If X is connected but X is not an interval, then there exist a,b € X and
peR\ X suchthata <p<b Let A={zr € X :x <p},and let B={zx € X : x> p}.
Then A,B # @,asa € Aand b€ B. We have X = AUBand ANB=g,asx € X
satisfies either z < p or x > p. To show that A is open, we show that B is closed. Since
p ¢ X, B C X only contains points larger than p; so B = B. This means that B is closed,
so A is open. Similarly, A is closed, so B is open. This contradicts X being connected. [
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